(9 of 10)
For example, children who are born with a cataract will become permanently blind in that eye if the clouded lens is not promptly removed. Why? The brain's visual centers require sensory stimulus--in this case the stimulus provided by light hitting the retina of the eye--to maintain their still tentative connections. More controversially, many linguists believe that language skills unfold according to a strict, biologically defined timetable. Children, in their view, resemble certain species of birds that cannot master their song unless they hear it sung at an early age. In zebra finches the window for acquiring the appropriate song opens 25 to 30 days after hatching and shuts some 50 days later.
WINDOWS OF OPPORTUNITY
With a few exceptions, the windows of opportunity in the human brain do not close quite so abruptly. There appears to be a series of windows for developing language. The window for acquiring syntax may close as early as five or six years of age, while the window for adding new words may never close. The ability to learn a second language is highest between birth and the age of six, then undergoes a steady and inexorable decline. Many adults still manage to learn new languages, but usually only after great struggle.
The brain's greatest growth spurt, neuroscientists have now confirmed, draws to a close around the age of 10, when the balance between synapse creation and atrophy abruptly shifts. Over the next several years, the brain will ruthlessly destroy its weakest synapses, preserving only those that have been magically transformed by experience. This magic, once again, seems to be encoded in the genes. The ephemeral bursts of electricity that travel through the brain, creating everything from visual images and pleasurable sensations to dark dreams and wild thoughts, ensure the survival of synapses by stimulating genes that promote the release of powerful growth factors and suppressing genes that encode for synapse-destroying enzymes.
By the end of adolescence, around the age of 18, the brain has declined in plasticity but increased in power. Talents and latent tendencies that have been nurtured are ready to blossom. The experiences that drive neural activity, says Yale's Rakic, are like a sculptor's chisel or a dressmaker's shears, conjuring up form from a lump of stone or a length of cloth. The presence of extra material expands the range of possibilities, but cutting away the extraneous is what makes art. "It is the overproduction of synaptic connections followed by their loss that leads to patterns in the brain," says neuroscientist William Greenough of the University of Illinois at Urbana-Champaign. Potential for greatness may be encoded in the genes, but whether that potential is realized as a gift for mathematics, say, or a brilliant criminal mind depends on patterns etched by experience in those critical early years.
