FERTILE MINDS

FROM BIRTH, A BABY'S BRAIN CELLS PROLIFERATE WILDLY, MAKING CONNECTIONS THAT MAY SHAPE A LIFETIME OF EXPERIENCE. THE FIRST THREE YEARS ARE CRITICAL

  • Share
  • Read Later

(3 of 10)

But the new research offers hope as well. Scientists have found that the brain during the first years of life is so malleable that very young children who suffer strokes or injuries that wipe out an entire hemisphere can still mature into highly functional adults. Moreover, it is becoming increasingly clear that well-designed preschool programs can help many children overcome glaring deficits in their home environment. With appropriate therapy, say researchers, even serious disorders like dyslexia may be treatable. While inherited problems may place certain children at greater risk than others, says Dr. Harry Chugani, a pediatric neurologist at Wayne State University in Detroit, that is no excuse for ignoring the environment's power to remodel the brain. "We may not do much to change what happens before birth, but we can change what happens after a baby is born," he observes.

Strong evidence that activity changes the brain began accumulating in the 1970s. But only recently have researchers had tools powerful enough to reveal the precise mechanisms by which those changes are brought about. Neural activity triggers a biochemical cascade that reaches all the way to the nucleus of cells and the coils of DNA that encode specific genes. In fact, two of the genes affected by neural activity in embryonic fruit flies, neurobiologist Corey Goodman and his colleagues at Berkeley reported late last year, are identical to those that other studies have linked to learning and memory. How thrilling, exclaims Goodman, how intellectually satisfying that the snippets of DNA that embryos use to build their brains are the very same ones that will later allow adult organisms to process and store new information.

As researchers explore the once hidden links between brain activity and brain structure, they are beginning to construct a sturdy bridge over the chasm that previously separated genes from the environment. Experts now agree that a baby does not come into the world as a genetically preprogrammed automaton or a blank slate at the mercy of the environment, but arrives as something much more interesting. For this reason the debate that engaged countless generations of philosophers--whether nature or nurture calls the shots--no longer interests most scientists. They are much too busy chronicling the myriad ways in which genes and the environment interact. "It's not a competition," says Dr. Stanley Greenspan, a psychiatrist at George Washington University. "It's a dance."

THE IMPORTANCE OF GENES

That dance begins at around the third week of gestation, when a thin layer of cells in the developing embryo performs an origami-like trick, folding inward to give rise to a fluid-filled cylinder known as the neural tube. As cells in the neural tube proliferate at the astonishing rate of 250,000 a minute, the brain and spinal cord assemble themselves in a series of tightly choreographed steps. Nature is the dominant partner during this phase of development, but nurture plays a vital supportive role. Changes in the environment of the womb--whether caused by maternal malnutrition, drug abuse or a viral infection--can wreck the clockwork precision of the neural assembly line. Some forms of epilepsy, mental retardation, autism and schizophrenia appear to be the results of developmental processes gone awry.

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10