When Life Exploded

FOR BILLIONS OF YEARS, SIMPLE CREATURES LIKE PLANKTON, BACTERIA AND ALGAE RULED THE EARTH. THEN, SUDDENLY, LIFE GOT VERY COMPLICATED

  • Share
  • Read Later

(6 of 9)

Breaking Through the Algae
To human eyes, the world on the eve of the Cambrian explosion would have seemed an exceedingly hostile place. Tectonic forces unleashed huge earthquakes that broke continental land masses apart, then slammed them back together. Mountains the size of the Himalayas shot skyward, hurling avalanches of rock, sand and mud down their flanks. The climate was in turmoil. Great ice ages came and went as the chemistry of the atmosphere and oceans endured some of the most spectacular shifts in the planet's history. And in one way or another, says Knoll, these dramatic upheavals helped midwife complex animal life by infusing the primordial oceans with oxygen.

Without oxygen to aerate tissues and make vital structural components like collagen, notes Knoll, animals simply cannot grow large. But for most of earth's history, the production of oxygen through photosynthesis — the metabolic alchemy that allowed primordial algae to turn carbon dioxide, water and sunlight into energy — was almost perfectly balanced by oxygen-depleting processes, especially organic decay. Indeed, the vast populations of algae that smothered the Precambrian oceans generated tons of vegetative debris, and as bacteria decomposed this slimy detritus, they performed photosynthesis in reverse, consuming oxygen and releasing carbon dioxide, the greenhouse gas that traps heat and helps warm the planet.

For oxygen to rise, then, the planet's burden of decaying organic matter had to decline. And around 600 million years ago, that appears to be what happened. The change is reflected in the chemical composition of rocks like limestone, which incorporate two isotopes of carbon in proportion to their abundance in seawater — carbon 12, which is preferentially taken up by algae during photosynthesis, and carbon 13, its slightly heavier cousin. By sampling ancient limestones, Knoll and his colleagues have determined that the ratio of carbon 12 to carbon 13 remained stable for most of the Proterozoic Eon, a boggling expanse of time that stretched from 2.5 billion years ago to the end of the Vendian. But at the close of the Proterozoic, just prior to the Cambrian explosion, they pick up a dramatic rise in carbon 13 levels, suggesting that carbon 12 in the form of organic material was being removed from the oceans.

One mechanism, speculates Knoll, could have been erosion from steep mountain slopes. Over time, he notes, tons of sediment and rock that poured into the sea could have buried algal remains that fell to the sea floor. In addition, he says, rifting continents very likely changed the geometry of ocean basins so that water could not circulate as vigorously as before. The organic carbon that fell to the sea floor, then, would have stayed there, never cycling back to the ocean surface and into the atmosphere. As levels of atmospheric carbon dioxide dropped, the earth would have cooled. Sure enough, says Knoll, a major ice age ensued around 600 million years ago — yet another link in a complex chain that connects geological and geochemical events to a momentous advance in biology.

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9