When Life Exploded

FOR BILLIONS OF YEARS, SIMPLE CREATURES LIKE PLANKTON, BACTERIA AND ALGAE RULED THE EARTH. THEN, SUDDENLY, LIFE GOT VERY COMPLICATED

  • Share
  • Read Later

(2 of 9)

Over the decades, evolutionary theorists beginning with Charles Darwin have tried to argue that the appearance of multicelled animals during the Cambrian merely seemed sudden, and in fact had been preceded by a lengthy period of evolution for which the geological record was missing. But this explanation, while it patched over a hole in an otherwise masterly theory, now seems increasingly unsatisfactory. Since 1987, discoveries of major fossil beds in Greenland, in China, in Siberia, and now in Namibia have shown that the period of biological innovation occurred at virtually the same instant in geologic time all around the world.

What could possibly have powered such a radical advance? Was it something in the organisms themselves or the environment in which they lived? Today an unprecedented effort to answer these questions is under way. Geologists and geochemists are reconstructing the Precambrian planet, looking for changes in the atmosphere and ocean that might have put evolution into sudden overdrive. Developmental biologists are teasing apart the genetic toolbox needed to assemble animals as disparate as worms and flies, mice and fish. And paleontologists are exploring deeper reaches of the fossil record, searching for organisms that might have primed the evolutionary pump. "We're getting data," says Harvard University paleontologist Andrew Knoll, "almost faster than we can digest it."

Every few weeks, it seems, a new piece of the puzzle falls into place. Just last month, in an article published by the journal Nature, an international team of scientists reported finding the exquisitely preserved remains of a 1-in.- to 2-in.-long animal that flourished in the Cambrian oceans 525 million years ago. From its flexible but sturdy spinal rod, the scientists deduced that this animal — dubbed Yunnanozoon lividum, after the Chinese province in which it was found — was a primitive chordate, the oldest ancestor yet discovered of the vertebrate branch of the animal kingdom, which includes Homo sapiens.

Even more tantalizing, paleontologists are gleaning insights into the enigmatic years that immediately preceded the Cambrian explosion. Until last spring, when John Grotzinger, a sedimentologist from M.I.T., led Erwin and two dozen other scientists on an expedition to the Namibian desert, this fateful period was obscured by a 20 million — year gap in the fossil record. But with the find in Namibia, as Grotzinger and three colleagues reported in the Oct. 27 issue of Science, the gap suddenly filled with complex life. In layer after layer of late Precambrian rock, heaved up in the rugged outcroppings the Namibians call kopfs (after the German word for "head"), Grotzinger's team has documented the existence of a flourishing biological community on the cusp of a startling transformation, a community in which small wormlike somethings, small shelly somethings — perhaps even large frondlike somethings — were in the process of crossing over a shadow line into uninhabited ecospace.

Here, then, are highlights from the tale that scientists are piecing together of a unique and dynamic time in the history of the earth, when continents were rifting apart, genetic programs were in flux, and tiny organisms in vast oceans dreamed of growing large.

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9