What Makes Teens Tick

A flood of hormones, sure. But also a host of structural changes in the brain. Can those explain the behaviors that make adolescence so exciting--and so exasperating?

  • Share
  • Read Later

(2 of 5)

Throughout the afternoon, the Mann brothers take turns completing tests of intelligence and cognitive function. Between sessions they occasionally needle one another in the waiting room. "If the other person is in a bad mood, you've got to provoke it," Anthony asserts slyly. Their mother Nancy Mann, a sunny paragon of patience who has three daughters in addition to the five boys, smiles and rolls her eyes.

Shortly before 5 p.m., the Manns head downstairs to the imaging floor to meet the magnet. Giedd, a trim, energetic man with a reddish beard, twinkly blue eyes and an impish sense of humor, greets Anthony and tells him what to expect. He asks Anthony to remove his watch, his necklace and a high school ring, labeled KEEPER. Does Anthony have any metal in his body? Any piercings? Not this clean-cut, soccer-playing Mormon. Giedd tapes a vitamin E capsule onto Anthony's left cheek and one in each ear. He explains that the oil-filled capsules are opaque to the scanner and will define a plane on the images, as well as help researchers tell left from right. The scanning will take about 15 minutes, during which Anthony must lie completely still. Dressed in a red sweat shirt, jeans and white K-Swiss sneakers, he stretches out on the examining table and slides his head into the machine's giant magnetic ring.

MRI, Giedd points out, "made studying healthy kids possible" because there's no radiation involved. (Before MRI, brain development was studied mostly by using cadavers.) Each of the Mann boys will be scanned three times. The first scan is a quick survey that lasts one minute. The second lasts two minutes and looks for any damage or abnormality. The third is 10 minutes long and taken at maximum resolution. It's the money shot. Giedd watches as Anthony's brain appears in cross section on a computer screen. The machine scans 124 slices, each as thin as a dime. It will take 20 hours of computer time to process the images, but the analysis is done by humans, says Giedd. "The human brain is still the best at pattern recognition," he marvels.

Some people get nervous as the MRI machine clangs noisily. Claustrophobes panic. Anthony, lying still in the soul of the machine, simply falls asleep.

Construction Ahead
One reason scientists have been surprised by the ferment in the teenage brain is that the brain grows very little over the course of childhood. By the time a child is 6, it is 90% to 95% of its adult size. As a matter of fact, we are born equipped with most of the neurons our brain will ever have — and that's fewer than we have in utero. Humans achieve their maximum brain-cell density between the third and sixth month of gestation — the culmination of an explosive period of prenatal neural growth. During the final months before birth, our brains undergo a dramatic pruning in which unnecessary brain cells are eliminated. Many neuroscientists now believe that autism is the result of insufficient or abnormal prenatal pruning.

What Giedd's long-term studies have documented is that there is a second wave of proliferation and pruning that occurs later in childhood and that the final, critical part of this second wave, affecting some of our highest mental functions, occurs in the late teens. Unlike the prenatal changes, this neural waxing and waning alters not the number of nerve cells but the number of connections, or synapses, between them. When a child is between the ages of 6 and 12, the neurons grow bushier, each making dozens of connections to other neurons and creating new pathways for nerve signals. The thickening of all this gray matter — the neurons and their branchlike dendrites — peaks when girls are about 11 and boys 12 1/2, at which point a serious round of pruning is under way. Gray matter is thinned out at a rate of about 0.7% a year, tapering off in the early 20s. At the same time, the brain's white matter thickens. The white matter is composed of fatty myelin sheaths that encase axons and, like insulation on a wire, make nerve-signal transmissions faster and more efficient. With each passing year (maybe even up to age 40) myelin sheaths thicken, much like tree rings. During adolescence, says Giedd, summing up the process, "you get fewer but faster connections in the brain." The brain becomes a more efficient machine, but there is a trade-off: it is probably losing some of its raw potential for learning and its ability to recover from trauma.

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5