(8 of 8)
The attitude in D-Wave's C-suite toward all this back-and-forth is, unsurprisingly, dismissive. "The people that really understand what we're doing aren't skeptical," says Brownell. Rose is equally calm about it; all that wrestling must have left him with a thick skin. "Unfortunately," he says, "like all discourse on the Internet, it tends to be driven by a small number of people that are both vocal and not necessarily the most informed." He's content to let the products prove themselves, or not. "It's fine," he says. "It's good. Science progresses by rocking the ship. Things like this are a necessary component of forward progress."
Are D-Wave's machines quantum computers? fortunately this is one of those scenarios where an answer will in fact become apparent at some point in the next five or so years, as D-Wave punches out a couple more generations of computers and better benchmarking techniques evolve and we either do see a significant quantum speedup or we don't.
The company has a lot of ground to cover between now and then, not just in hardware but on the software side too. Generations of programmers have had decades to create a rich software ecosystem around classical microprocessors in order to wring the maximum possible amount of usefulness out of them. But an adiabatic quantum computer is a totally new proposition. "You just don't program them the way you program other things," says William Macready, D-Wave's VP of software engineering. "It's not about writing recipes or procedures. It's more about kind of describing, What does it mean to be an answer? And doing that in the right way and letting the hardware figure it out."
For now the answer is itself suspended, aptly enough, in a state of superposition, somewhere between yes and no. If the machines can do anything like what D-Wave is predicting, they won't leave many fields untouched. "I think we'll look back on the first time a quantum computer outperformed classical computing as a historic milestone," Brownell says. "It's a little grand, but we're kind of like Intel and Microsoft in 1977, at the dawn of a new computing era."
But D-Wave won't have the field to itself forever. IBM has its own quantum-computing group; Microsoft has two. There are dozens of academic laboratories busily pushing the envelope, all in pursuit of the computational equivalent of splitting the atom. While he's got only 20 qubits now, Monroe points out that the trends are good: that's up from two bits 20 years ago and four bits 10 years ago. "Soon we will cross the boundary where there is no way to model what's happening using regular computers," he says, "and that will be exciting."