Science: The Gene Hunt

Scientists launch a $3 billion project to map the chromosomes and decipher the complete instructions for making a human being

  • Share
  • Read Later

(7 of 9)

Hood is not alone in his quest for automation. That is also the goal of Columbia University biochemist Charles Cantor, recently appointed by the Energy Department to head one of its two genome centers. "It's largely an engineering project," Cantor explains, intended to produce tools for faster, less expensive sequencing and to develop data bases and computer programs to scan the data. Not to be outdone, Japan has set up a consortium of four high- tech companies to establish an automated assembly line, complete with robots, that researchers hope will be capable of sequencing 100,000 base pairs a day within three years.

Is there a better way? In San Francisco in January, Energy Department scientists displayed a photograph of a DNA strand magnified a million times by a scanning tunneling microscope. It was the first direct image of the molecule. If sharper images can be made, the scientists suggested, it may be possible to read the genetic code directly. But that day seems very far off.

Even before the Human Genome Project was begun by the NIH, others were deeply involved in probing the genome. Building on a long-standing program of research on DNA damage caused by radiation, biologist Charles DeLisi in 1987 persuaded the Energy Department to launch its own genome program. In addition to the sequencer and computer-hardware engineering projects, Energy Department scientists are focusing their attention on mapping seven complete chromosomes.

Victor McKusick, a geneticist at Johns Hopkins University, was in the game much earlier. He has been cataloging genes since 1959, compiling findings in his regularly updated publication, Mendelian Inheritance in Man. In August 1987 he introduced an electronic version that scientists around the world can tap into by computer. At the end of December it contained information on all the 4,550 genes identified to date. Says McKusick: "That's an impressive figure, but we still have a long way to go." Several other libraries of genetic information are already functioning, among them GenBank at the Los Alamos National Laboratory and the Howard Hughes Medical Institute's Human Gene Mapping Library in New Haven, Conn.

McKusick also directs the Human Genome Organization (known informally as "Victor's HuGO"), a group formed last September in Montreux, Switzerland, by 42 scientists representing 17 nations. "The U.N. of gene mapping," as McKusick describes it, plans to open three data-collection and -distribution sites, one each in Japan, North America and Europe.

Geneticist Ray White, formerly at M.I.T., has established a major center for genetic-linkage mapping at the University of Utah in Salt Lake City. In 1980 he began a study of 50 large families, collecting their blood samples, extracting white blood cells, which he multiplies in cell cultures, then preserving them in freezers.

Working with family pedigrees and DNA extracted from the cell bank, White and his group have identified more than 1,000 markers, each about 10 million base pairs apart, on all the chromosomes. They have also been major contributors to the Center for the Study of Human Polymorphisms, set up in Paris by French Nobel laureate Jean Dausset to coordinate an international effort to map the genes. Of the 40 families whose cell lines reside in CEPH's major data banks, 27 have been provided by White's group.

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9