The Brain: The Mystery of Consciousness

You exist, right? Prove it. How 100 billion jabbering neurons create the knowledge--or illusion--that you're here

  • Share
  • Read Later
Illustration for TIME by Istvan Orosz

(5 of 7)

A low-tech way to experience the effect yourself is to look through a paper tube at a white wall with your right eye and hold your left hand in front of your left eye. After a few seconds, a white hole in your hand should appear, then disappear, then reappear.

Monkeys experience binocular rivalry. They can learn to press a button every time their perception flips, while their brains are impaled with electrodes that record any change in activity. Neuroscientist Nikos Logothetis found that the earliest way stations for visual input in the back of the brain barely budged as the monkeys' consciousness flipped from one state to another. Instead, it was a region that sits further down the information stream and that registers coherent shapes and objects that tracks the monkeys' awareness. Now this doesn't mean that this place on the underside of the brain is the TV screen of consciousness. What it means, according to a theory by Crick and his collaborator Christof Koch, is that consciousness resides only in the "higher" parts of the brain that are connected to circuits for emotion and decision making, just what one would expect from the blackboard metaphor.

WAVES OF BRAIN

CONSCIOUSNESS IN THE BRAIN CAN BE TRACKED NOT JUST IN SPACE but also in time. Neuroscientists have long known that consciousness depends on certain frequencies of oscillation in the electroencephalograph (EEG). These brain waves consist of loops of activation between the cortex (the wrinkled surface of the brain) and the thalamus (the cluster of hubs at the center that serve as input-output relay stations). Large, slow, regular waves signal a coma, anesthesia or a dreamless sleep; smaller, faster, spikier ones correspond to being awake and alert. These waves are not like the useless hum from a noisy appliance but may allow consciousness to do its job in the brain. They may bind the activity in far-flung regions (one for color, another for shape, a third for motion) into a coherent conscious experience, a bit like radio transmitters and receivers tuned to the same frequency. Sure enough, when two patterns compete for awareness in a binocular-rivalry display, the neurons representing the eye that is "winning" the competition oscillate in synchrony, while the ones representing the eye that is suppressed fall out of synch.

So neuroscientists are well on the way to identifying the neural correlates of consciousness, a part of the Easy Problem. But what about explaining how these events actually cause consciousness in the sense of inner experience--the Hard Problem?

TACKLING THE HARD PROBLEM

TO APPRECIATE THE HARDNESS OF THE HARD PROBLEM, CONSIDER how you could ever know whether you see colors the same way that I do. Sure, you and I both call grass green, but perhaps you see grass as having the color that I would describe, if I were in your shoes, as purple. Or ponder whether there could be a true zombie--a being who acts just like you or me but in whom there is no self actually feeling anything. This was the crux of a Star Trek plot in which officials wanted to reverse-engineer Lieut. Commander Data, and a furious debate erupted as to whether this was merely dismantling a machine or snuffing out a sentient life.

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7